Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens.
نویسندگان
چکیده
Selection of a laboratory colony of the brown planthopper Nilaparvata lugens with the pyrethroids permethrin and lambda-cyhalothrin increased its resistance to both insecticides. Biochemical analysis and synergistic studies with metabolic inhibitors indicated that elevated glutathione S-transferases (GSTs) with a predominant peroxidase activity conferred resistance to both pyrethroids, whereas esterases conferred part of the resistance to permethrin. Purified esterases hydrolysed permethrin at a slow rate, but incubation of either pyrethroid or their primary metabolites with partially purified GSTs had no effect on the metabolic profile. Although GSTs were sensitive to inhibition by both pyrethroids, they did not serve as binding proteins, as previously hypothesized [Grant and Matsumura (1988) Insect Biochem. 18, 615-622]. We demonstrate that pyrethroids, in addition to their neurotoxic effect, induce oxidative stress and lipid peroxidation in insects. Pyrethroid exposure induced lipid peroxides, protein oxidation and depleted reduced glutathione. Elevated GSTs in the resistant strains attenuated the pyrethroid-induced lipid peroxidation and reduced mortality, whereas their in vivo inhibition eliminated their protective role. We therefore hypothesize that the main role of elevated GSTs in conferring resistance in N. lugens is through protecting tissues from oxidative damage. Our study extends the GSTs' range of efficacy to pyrethroid insecticides and possibly explains the role of elevated GSTs in other pyrethroid-resistant insects.
منابع مشابه
Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens.
A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majo...
متن کاملBuprofezin susceptibility survey, resistance selection and preliminary determination of the resistance mechanism in Nilaparvata lugens (Homoptera: Delphacidae).
BACKGROUND Buprofezin has been used for many years to control Nilaparvata lugens (Stål). Assessment of susceptibility change in the insect is essential for maintaining control efficiency and resistance management. RESULTS Eleven-year surveys showed that most field populations were susceptible before 2004. However, substantially higher levels of resistance (up to 28-fold) were found in most of...
متن کاملSelection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms.
A field population of brown planthoppers (Nilaparvata lugens Stål) was collected and selected for imidacloprid resistance in the laboratory. The resistance increased by 11.35 times in 25 generations and the resistance ratio reached 72.83 compared with a laboratory susceptible strain. The selected resistant strain showed obvious cross-resistance to all the acetylcholine receptor targeting insect...
متن کاملGenomic Insights into the Glutathione S-Transferase Gene Family of Two Rice Planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae)
BACKGROUND Glutathione S-transferase (GST) genes control crucial traits for the metabolism of various toxins encountered by insects in host plants and the wider environment, including insecticides. The planthoppers Nilaparvata lugens and Sogatella furcifera are serious specialist pests of rice throughout eastern Asia. Their capacity to rapidly adapt to resistant rice varieties and to develop re...
متن کاملThe Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus
Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P45...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 357 Pt 1 شماره
صفحات -
تاریخ انتشار 2001